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Estimates and recommendations for coincidence geometry

W. Younes and J. J. Ressler
(Dated: May 23, 2013)

I. ROUGH ESTIMATE OF COINCIDENCE SUMMING CORRECTIONS

A. Introduction

When two truly coincident gamma-rays deposit their energy within the same detector, a composite pulse which is
indistinguishable from one due to a single event may be recorded by that detector. This summing effect is known to
become more important as the distance from source to detector is decreased [1]. In this short report, we give a rough
estimate for the size of this effect as a function of source-to-detector distance. The formalism used in this report is
taken mainly from [2], and similar results can also be found, e.g., in [1, 3, 4]. In general, the size of the effect will
depend on the exact level scheme of the nucleus studied, but for the sake of extracting numerical values, we will
assume a particular level scheme in this report.

B. Assumed measurement conditions

1. Simplified level scheme

For demonstration purposes, we assume the simple level scheme shown in Fig. 3 of [2], and reproduced as Fig. 1 of
this report for easy reference. The energy of each gamma-ray is denoted by Ei, and its emission probability is given
by pi. The side-feeding probabilities are βi, with β1 + β2 + β3 = 1. Thus, if we denote by bi the fraction of decays
from the level from which γi originates and which produces the γi photons (i.e., the branching ratios), we have the
following relations[5]

p1 = β2b1

p2 = (β2b1 + β1) b2

p3 = β2b3

In the numerical applications below, we will assume β1 = 0, and b1 = 2/3, b2 = 1, b3 = 1/3, and therefore

p1 =
2

3
β2

p2 =
2

3
β2

p3 =
1

3
β2

We do not need to supply a numerical value for β2, because the emission probabilities pi will always appear as ratios
in the calculations below.

2. Simplified detector

In order to simplify the efficiency calculations, we approximate the Ge crystal by a flat disk (rather than a thick
cylinder) of diameter a. For numerical applications, we will use a = 11.4 cm (the diameter for the BE6530 model). A
schematic representation of this detector, located at a distance d from a source, is shown in Fig. 2. The solid angle
subtended by the disk is given by

Ω =

ˆ ˆ
n̂ · d~a
r2

where n̂ is a unit vector from the origin to a point on the surface, d~a is a vector whose magnitude is a differential
element of area and whose direction is perpendicular to the surface. Finally, r is the distance from the origin to a point
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Figure 1: Simplified level scheme used in this report.

on the surface. In the special case of the disk in Fig. 2 this reduces to the double integral in cylindrical coordinates

Ω =

ˆ 2π

0

dθ

ˆ a/2

0

ρ dρ
cosφ

d2 + ρ2

which can be evaluated analytically

Ω = 2πd

ˆ a/2

0

ρ dρ

(d2 + ρ2)
3/2

= 2π

(
1− 1√

1 + b2

)
(1)

and where we have introduced the dimensionless parameter

b ≡ a

2d

Given a diameter a and distance d of the detector, we can therefore readily calculate its geometric efficiency

εgeo ≡
Ω

4π
=

1

2

(
1− 1√

1 + b2

)
(2)

The intrinsic efficiency εint will normally depend on the gamma-ray energies, but since these will vary depending
on the nucleus under consideration, we will assume that it is independent of gamma-ray energy, and in numerical
applications below we will take εint = 0.6. We will also make a distinction between the peak efficiency (εi with
i = 1, 2, 3) for detecting a gamma-ray at a precise energy, and the total efficiency (εTi with i = 1, 2, 3) for detecting
a gamma-ray at any energy in the spectrum (e.g., if it does not deposit its full energy in the spectrometer). In this
case, we have the relations

εi = εgeo × εint

and

εTi =
εi
P/T

where P/T is the peak-to-total ratio which, for numerical applications, we will take equal to 0.7.

C. Calculation of correction and uncertainty

1. Formulas for coincidence-sum correction factors

We now recapitulate the results in [2]. For γ1, if there were no cascade, and given an activity A of the nucleus
feeding the levels in Fig. 1, we would expect a count rate

N1 = Ap1ε1
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Figure 2: Disk-shaped detector of diameter a, at a distance d from the source.

for the photopeak of this gamma-ray. However, every time γ1 is emitted, γ2 will also be emitted. Thus, there is a
probability that the energy of γ2 will also be recorded (in part or in full) at the same time as that of γ1. For simplicity,
we ignore any angular correlation effects. Then, the number of times we record simultaneously the sum of E1 and
either all or part of E2 is given by N1ε

T
2 . Whenever this happens, we lose counts in the γ1 photopeak, and observe a

smaller number of counts

N ′1 = N1 −N1ε
T
2

This loss must be accounted for by a correction factor

C1 ≡
N1

N ′1
=

1

1− εT2

Next, for γ2, if there were no cascade, we would expect a count rate

N2 = Ap2ε2

Because of the γ1 − γ2 coincidence, we expect events were the sum of E2 and either all or part of E1 is recorded,
taking counts away from the γ2 photopeak. Again, ignoring angular-correlation effects, these sum-coincidence events
will occur at a rate

(
Ap1ε

T
1

)
ε2, and therefore we will observe a rate in the γ2 photopeak of

N ′2 = N2 −
(
Ap1ε

T
1

)
ε2

= N2

(
1− p1

p2
εT1

)
The loss in photopeak counts must be accounted for by the correction factor

C2 ≡
1

1− p1
p2
εT1

Finally, for γ3, the situation is slightly different. In this case, it is possible to detect the full-energy sum E1 + E2

from a γ1− γ2 coincidence which would be erroneously attributed to a γ3 decay, thereby leading to a peak gain in the
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γ3 photopeak. The observed counts, taking this effect into account, would be[6]

N ′3 = N3 +Ap1ε1ε2

= N3

(
1 +

p1ε1ε2
p3ε3

)
giving a peak-gain correction factor

C3 ≡
1

1 + p1ε1ε2
p3ε3

2. Uncertainties for coincidence-sum correction factors

As stated in section I B 2, we will make the simplifying assumption that the peak and total efficiencies are indepen-
dent of gamma-ray energy, i.e., ε1 = ε2 = ε3 ≡ ε and εT1 = εT2 = εT3 ≡ εT . In that case, the correction factors derived
in section I C 1 reduce to

C1 =
1

1− εT

C2 =
1

1− p1
p2
εT

C3 =
1

1 + p1
p3
ε

The variance of C1 is given by

σ2
C1

=

(
∂C1

∂εT

)2

σ2
εT

and, after straightforward calculations we get

σC1

C1
=

(
εT

1− εT

)
︸ ︷︷ ︸

ρ1

σεT

εT

This very convenient form relates the relative uncertainty in C1 to the relative uncertainty in the total efficiency εT

through a scale factor ρ1. We can obtain similar expressions for the other correction factors (making the reasonable
assumption that efficiencies and branching ratios are uncorrelated). To wit,

σC2

C2
=

(
p1
p2
εT

1− p1
p2
εT

)
︸ ︷︷ ︸

ρ2

√(
σp1
p1

)2

+

(
σp2
p2

)2

+
(σεT
εT

)2

and

σC3

C3
=

(
p1
p3
ε

1 + p1
p3
ε

)
︸ ︷︷ ︸

ρ3

√(
σp1
p1

)2

+

(
σp2
p2

)2

+
(σε
ε

)2

Ideally, the experiment should be designed so that ρi � 1, and that therefore the coincidence-sum corrections
contribute very little to the overall uncertainty, compared to the efficiencies and branching ratios.
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Parameter Value

a 11.4 cm

p1
2
3
β2

p2
2
3
β2

p3
1
3
β2

εint 0.6

P/T 0.7

Table I: Parameter values used in the numerical calculations.
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Figure 3: Uncertainty scale factors ρi plotted as a function of the distance d between source and detector. Note that, because
p1 = p2 and all the efficiencies are the same in our example, the curves for C1 and C2 lie on top of each other.

3. Numerical application

Here we plot the uncertainty scale factors ρi derived in section I C 2, using the particular values of the parameters
given in sections I B 1 and I B 2, and summarized in table I. These uncertainty scale factors are plotted in Fig. 3.

D. Recommendations

The results obtained in this report and summarized in Fig. 3 depend sensitively on the particular level scheme
under consideration. We note in particular, that the factor ρ3 tends to its maximum value of 1 for b1 � b3. In other
words, if the γ3 branch in Fig. 1 is very weak, then whenever we record an energy E3 in the detector, it is far more
likely to be caused by the γ1 − γ2 summed coincidence, with energy E1 + E2 = E3, than by an actual γ3 photon.
In that case, the uncertainty contribution from the peak-gain correction factor C3 would be as large as that of the
other sources of uncertainty in the problem. In our particular example, we find that the correction uncertainties
become small (i.e., ρi ∼ 10%) for a distance d & 10 cm. In practice, the distance d should be selected with the specific
gamma-rays of interest and associated decay schemes in mind, with the goal of maximizing the geometric efficiency
while keeping the coincidence-sum corrections at an acceptably small level.
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II. SCATTER

A. Introduction

The detector will be sensitive the gamma-rays emitted by the source, as well as any photons scattered into the
detector volume from surrounding materials. The more material surrounding the detection system, the large the
scatter contribution to the energy spectrum. The energy of the scattered photon (E′) depends on the energy of the
originating gamma-ray (E) as well as the scattering angle (θ):

E′ =
E

1 + (1−cosθ)E
mec2

where me is the rest mass of the electron (0.511 MeV). Higher angle scatter, >90◦, can significantly increase the
count contribution to the lower energies of the gamma-ray spectrum. Very high scatter, at ∼180◦, produces a broad
backscatter peak that may confuse peak fitting, activity estimates, and nuclide identification efforts.

B. Recommendation

With active samples, significant scatter from shielding materials near the detector volume can hinder spectroscopic
analyses. Therefore, the detectors should not have any additional materials nearby.
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